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Generative AI has undergone a surge in popularity recently, particularly with the introduction of 
Large Language Models (LLMs) like ChatGPT. There are numerous applications of AI through-
out the economy, including many promising applications in the electricity sector. This sector’s 
reliance on data and analytics, combined with the increasing complexity of the electricity grid 
from the introduction of new technologies, positions it to become a potential widespread 
adopter of generative AI. In this case study, we detail how generative AI is being used in the 
electricity sector by examining state-of-the-art research and use cases and then describe the 
interconnectedness of the electricity sector and the development of AI.

The case study is structured as follows: First, we provide an overview of the U.S. electricity 
sector and how it operates. Second, we discuss some of the applications of AI in the electric-
ity sector and provide examples of how generative AI is being used to increase productivity 
of firms. Lastly, we examine the relationship between AI models and the electricity sector, 
focusing on the dynamics between AI’s energy consumption and the increasing efficiency of 
the electricity sector from AI.

1. Overview of the US electricity sector
The U.S. electricity sector is a complex system composed of three main processes: electricity 
generation, transmission, and distribution (U.S. Environmental Protection Agency [EPA] 2022). 
Electricity is primarily generated through power plants and other utility-scale generators, which 
use a mix of renewable (e.g., hydro, wind, solar) and non-renewable energy (e.g., coal, natural 
gas) energy sources. After generation, electricity is then transferred via transmission and dis-
tribution lines to reach residential, commercial, and industrial users.

In recent years, the sector has undergone a shift towards decarbonization (Lawson 2018). 
Some of the main drivers of this include changing domestic policy and regulation and interna-
tional agreements, both in response to climate change (Reuter et al. 2024). As climate change 
has increasingly affected the planet, there has been a greater focus on reducing the use of 
fossil fuels such as coal in the electricity sector. Also, regulations and policies such as the 
Inflation Reduction Act have shifted the sector towards addressing climate change by bolster-
ing the use of renewable energy (Donohoo-Vallett 2023). In addition, international agreements 
to decarbonize such as the Paris Agreement motivate governments to shift towards decar-
bonization of the electricity sector (“How Are International Agreements Helping Fight Global 
Warming?” 2024). While the future of these agreements and policies in the U.S. is uncertain, 
the innovation and cost reductions in the sector will undoubtedly continue despite potential 
policy changes (The White House 2025; Fujii-Rajani and Patnaik 2025; Kane et al. 2025).

1.1. GENERATION

In order to generate electricity, fuels need to be converted into energy by electricity generators. 
Electricity production uses several different power sources, including coal, natural gas, pe-
troleum, wind, solar, and hydropower. In 2024, Figure 1 shows that fossil fuels accounted for 
approximately 59% of total U.S. electricity generation, while renewables accounted for about 
41%. In addition, the electricity generation sector has transitioned away from coal, which tends 
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FIGURE 1

to be more emissions-intensive than other sources, 
to utilize more natural gas, a less-emissions-intensive 
alternative to coal (U.S. Energy Information Agency 
[EIA] 2021). 

In the U.S., 42% of electricity is generated by steam 
turbines as of 2022, which burn fuels such as coal 
or natural gas to produce steam that then powers a 
generator’s turbine (EIA 2023). There are also combus-
tion gas electricity turbines that convert fuels into hot 
gases to turn blades in a turbine. Renewable energy 
turbines such as hydroelectric and wind turbines 
harness natural forces such as wind and water to spin 
turbine blades, creating electricity. Solar photovoltaic 
(PV) cells are turbine-less generators that convert the 
sun’s energy into electricity. 

The cost of renewable energy has decreased in recent 
years, making it more profitable to shift towards 
renewable energies. From 2010 to 2021, the costs of 
solar photovoltaics (PV) decreased by 88%, the costs 

of onshore wind decreased by 68%, and the cost of 
offshore wind decreased by 60% (Taylor et al. 2022). 
Forecasts show that renewable energy will continue to 
increase and take up more of total power production in 
the future (“Forecasting Share of Renewables in Final 
Consumption” n.d.). 

In addition, fossil fuels are more expensive than util-
ity-scale solar and onshore wind. As shown in Figure 
2, the average cost per megawatt-hour ($/MWh) in 
2024 was $61 for solar PV and $50 for onshore wind. 
These costs were lower than those of gas-powered 
plants—$169 for peaking plants and $76 for combined 
cycle—as well as coal-powered plants, which had a 
cost of $118 per megawatt-hour.  Furthermore, ac-
cording to the International Renewable Energy Agency, 
two-thirds of new renewable energy power installed in 
2021 was cheaper than the cheapest coal-fired option 
in the G20 (Taylor et al. 2022).
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Different types of power plants have different types 
of efficiency rates, which measure the percentage 
of energy that is produced in a power plant that is 
converted into electricity. As seen in Figure 3, the 
efficiency rates of power plants have greatly increased 
over time. These efficiency gains have been achieved 
mainly by reducing heat loss in three main areas of a 
thermal power plant: the boiler (fuel heat is converted 
to steam), the turbine (steam is converted to mechan-
ical rotational energy), and the generator (rotational 
energy is converted to electric power) (Cleveland et 
al. 2023). For renewables, wind power plants typically 
operate at around 35% to 47% efficiency while solar 
power plants operate at around 18% to 25% efficiency 
(Feng 2023; National Renewable Energy Laboratory 
n.d.). Hydroelectric power plants are highly efficient, 
operating at about 90% efficiency (Killingtveit 2020). 
This is because water is directly funneled to turbines 
that generate electricity, which results in little energy 
loss during the conversion process (Feng 2023).

1.2. TRANSMISSION AND DISTRIBUTION

Once generated, electricity is stepped up to a higher 
voltage for efficient transmission across long-dis-
tance power lines that make up the transmission 
network (EIA 2024). The transmission system includes 
high-voltage lines, towers, substations, transformers, 
and monitoring systems. 

The U.S. electrical grid, comprised of about 3,000 
utilities and over 2 million miles of power lines, is 
divided into three major grid regions: Eastern, West-
ern, and Texas (McBride and Siripurapu 2022). The 
grid regions, also known as interconnections, consist 
of distinct local electricity grids that together serve 
hundreds of millions of users. These grid interconnec-
tions link multiple local grids, enabling the transfer of 
electricity from areas with excess power to those ex-
periencing a higher demand than their local production 
capacity (Garg 2022). 

FIGURE 2
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There are two types of renewable energy generation 
in the electricity sector: distributed and centralized, 
utility-scale generation. Distributed generation encom-
passes the small-scale renewable sources located on 
the distribution grid, typically at the residential or com-
munity level. Centralized, utility-scale generation refers 
to larger projects that connect to the grid through 
transmission lines (Cleary and Palmer 2020).

Historically, grids were developed to distribute electric-
ity from a small number of producers to many users. 
Recent advances in the grid, such as the implementa-
tion of information technology and two-way flows of 
electricity, have led to the creation of the “smart grid.” 
While not considered AI, the smart grid uses digital 
and advanced technologies to leverage two-way flows 
of electricity and information to establish an automat-
ed, distributed, and advanced energy delivery network 
(Fang et al. 2012). The smart grid is a modernized 
version of the 20th century power grid and improves 
coordination of the many components within a grid 

system, which lends itself well to the implementation 
of AI. A survey of the literature on smart grids found 
that innovations for the smart grid can be divided into 
three major systems: the smart infrastructure system, 
the smart protection system, and the smart manage-
ment system (Fang et al. 2012). The smart infrastruc-
ture system includes communications, energy, and 
information supporting the smart grid, and facilitates 
the two-way flow of information and electricity. The 
smart management system provides key management 
and control services to the smart grid. The smart 
protection system protects against system failure 
and ensures the reliability, security, and privacy of the 
smart grid. 

The rise of solar panels and other distributed genera-
tion technologies has further increased grid complex-
ity. These technologies allow individuals and orga-
nizations to produce electricity themselves through 
consumer products such as solar panels. Traditionally, 
the grid was designed for one-way electricity flow 
from power plants to consumers. Now, the grid must 

FIGURE 3
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support two-way transmission flows, allowing households and businesses to sell surplus 
electricity back to utility companies. This has been essential for integrating distributed energy 
resources into the modern grid. 

The increasing integration of wind and solar energy presents challenges due to their variabil-
ity. Fluctuations in renewable energy output make it difficult for grid operators to balance 
supply and demand of electricity, an integral aspect of ensuring the stability of the electricity 
grid. While statistical models help predict renewable energy availability, accurate forecasting 
remains a challenge.

2. Applications of AI in the 
electricity sector

The electricity sector is undergoing a significant transformation with the adoption of AI and 
other advanced technologies. As the industry faces increasing demands for efficiency, reli-
ability, and sustainability, generative AI is emerging as a key tool for achieving these goals. 
Government agencies, international governmental organizations, and private companies are at 
the forefront of researching how AI can be integrated into the electricity sector, carefully con-
sidering its benefits and associated risks (Lakshmipathi 2023; Office of Cybersecurity, Energy 
Security, and Emergency Response 2024; Rozite et al. 2023). 

One of the sector’s strengths is its reliance on data analytics, which provides a foundation for 
adopting generative AI, a technology that thrives on large datasets. Power plants and trans-
mission networks have collected extensive data from sensors and other monitoring systems, 
positioning the sector to take full advantage of generative AI’s capabilities.

2.1. LOAD FORECASTING WITH GENERATIVE AI 

Load forecasting is a key function of the electricity sector and ensures the efficiency, reliabil-
ity, and economic feasibility of the grid. Accurate load forecasting ensures that resources 
are optimally allocated, lowers operating costs, and reduces the risk of grid instability (Liu et 
al. 2024). Traditional load forecasting methods, however, struggle to capture the complex, 
non-linear relationships in electricity consumption data, which can lead to inefficiencies and 
high operating costs.

Generative AI offers a potential solution by improving the accuracy and efficiency of load 
forecasting models (Avci 2023). By leveraging historical data, weather patterns, and socioeco-
nomic factors, generative AI can predict electricity demand with greater precision, resulting in 
better resource management and planning (Jones 2023). 

Recent advancements in AI, particularly the introduction of a data processing approach known 
as the “transformer architecture” (Vaswani et al. 2017), have shown significant potential in 
improving load forecasting. Where previous methods like Recurrent Neural Networks (RNNs) 
were limited by the requirement to process inputs sequentially, transformer-based models 
are able to process entire input sequences simultaneously, leading to shorter computational 
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times (Chan and Yeo 2024). Chan and Yeo (2024) 
demonstrate the ability of transformers as electricity 
load forecasters, finding that their sparse transform-
er model attained similar accuracy to an RNN-based 
model while making predictions up to five times faster. 

Large Language Models (LLMs) represent another 
promising development in time series and electricity 
load forecasting. Jin et al. (2024) developed a frame-
work for repurposing LLMs for time series forecasting, 
finding that LLMs can outperform state-of-the-art 
forecasting methods across a wide range of applica-
tions. Furthermore, recent research shows that load 
forecasting can be significantly improved using LLMs. 
Gao et al. (2024) use a pre-trained language model in 
short-term load forecasting and find that their model 
outperforms other machine learning-based methods. 
Some studies suggest that LLM-based approaches 
may even surpass transformer-based techniques. Liu 
et al. (2024) apply an LLM to short-term load fore-
casting and report better performance compared to 
transformer-based forecasting.

Older generative models, such as Generative Adversar-
ial Networks1 (GANs) also have important use cases 
in electricity load forecasting. When data is limited 
for load forecasting, forecasting accuracy can suffer. 
Generative AI models can fill the gaps of limited data 
by generating synthetic data that can be used in time 
series forecasting. Aissa and Tarek (2024) developed 
a GAN-based model that generated a synthetic data 
set for electricity load data. This study found that 
using synthetic data improved the predictive accuracy 
of a forecasting model by 7.45%, largely due to a larger 
training database.

While the research on using generative AI for load 
forecasting is novel, some companies are beginning to 
use generative AI in their load forecasting processes. 
Gridmatic, a power marketer startup, uses generative 
AI in electricity load forecasting (Jones 2023). They 
developed a model of the U.S. grid that is used to 
forecast demand and renewable energy output. In ad-
dition, a pilot project by Gridmatic and EdgeConneX, an 
internet service provider, uses generative AI to enable 

24/7, carbon-free energy for a Texas data center. This 
is done by forecasting and matching supply to demand 
on an hourly basis. 

One case study found a major electricity distributor 
in eastern Turkey used a GAN model to improve their 
load forecasting processes (Avci 2023). The study 
found that this model outperformed the previously 
employed time series models and better captured the 
non-linear relationships in electricity consumption 
data.

2.2. PREDICTIVE MAINTENANCE AND 
VEGETATION MANAGEMENT

In addition to load forecasting, generative AI is making 
significant advancements in predictive maintenance 
and vegetation management, two areas that are vital 
for maintaining the reliability and safety of the electric-
ity grid.

Predictive maintenance uses AI to identify which com-
ponents of a power plant or grid are most likely to fail, 
enabling proactive repairs and reducing downtime (Of-
fice of Cybersecurity, Energy Security, and Emergency 
Response 2024). Generative AI can enhance this pro-
cess by providing operators with detailed insights and 
recommendations. For instance, RetiPiù, an Italian gas 
and electric company, uses predictive and generative 
AI to conduct predictive maintenance (Engelhardt et 
al. 2024). The predictive AI model that RetiPiù is used 
to predict equipment malfunctions such as gas leaks. 
The generative AI system then automatically generates 
work orders, complete with maintenance schedules 
and status updates, streamlining the m–––––ainte-
nance process and improving operational efficiency. 

Vegetation management, particularly in transmission 
and distribution networks, is another area where gener-
ative AI is proving invaluable (Engelhardt et al. 2024). 
Managing vegetation near power lines is crucial for 
preventing outages and ensuring the safety of the grid, 
but it is also a costly and labor-intensive task. Genera-
tive AI can improve this process by analyzing satellite 
imagery and predicting tree growth patterns, helping 
utilities prioritize areas that require immediate atten-
tion.
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A practical example of generative AI in this domain comes from an electricity distribution 
company in Turkey, which uses a Generative Adversarial Network (GAN) model to simulate 
potential equipment degradation under various conditions (Avci 2023). This approach has 
allowed the company to conduct preventative interventions, leading to a reduction in unex-
pected failures and an improvement in overall system reliability.

2.3. OTHER KEY APPLICATIONS OF GENERATIVE AI

Beyond load forecasting, predictive maintenance, and vegetation management, generative AI 
offers a wide range of applications that can enhance various aspects of the electricity sector. 

Grid operators, for example, can benefit from fine-tuned generative AI models that support de-
cisionmaking processes. The National Renewable Energy Laboratory conducted a study that 
introduced a fine-tuned generative AI model, eGridGPT, in the control room of grid operators 
(Choi et al. 2024). This model provides real-time analysis, suggestions, and decision recom-
mendations, helping operators navigate complex scenarios and maintain grid stability.

Cybersecurity is another critical area where generative AI can make a significant impact. As 
the grid is increasingly digitized, it is more susceptible to cyberattacks. Therefore, the ability 
to detect and respond to such threats is more important than ever. Generative AI assists in 
cybersecurity by creating synthetic data that simulates cyberattack scenarios, enabling better 
preparation and response strategies. One paper uses a deep learning GAN algorithm to learn 
patterns in cyberattack messages and create additional cyberattack messages for detection 
(Ying et al. 2019). Having abundant data on cybersecurity attacks will help grid operators 
ensure that the grid sustains operation and avoids losses due to power outages caused by 
cyberattacks.

Generative AI is also being used to improve IT support within the electricity sector. Enel, a 
leading integrated electric utility company, worked with Amazon to automate their IT service 
desk tickets, boosting productivity for application management service teams by reducing 
time spent on repetitive service requests that are related to document procedures (Italiano 
2024).

3. Energy consumption of AI
While AI holds immense potential for making energy systems more efficient through innova-
tions such as smart grids and improvements to energy forecasting, its energy consumption 
poses significant challenges (SAP 2021). Training and operating sophisticated AI models, 
especially large-scale generative AI models built on deep learning, requires substantial com-
puting power, which translates into high energy demands. 

As of 2022, data centers, which are a crucial input for AI development and deployment, 
accounted for approximately 1-2% of total global electricity demand and around 3% of U.S. 
electricity demand (Davenport et al. 2024; Singer et al. 2024). Data center energy consump-
tion is expected to grow to approximately 3-4% globally and 4.6-9.1% in the U.S. by 2030 (EPRI 
2024; Singer et al. 2024). This growth is driven not only by the increasing prevalence of AI but 
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also by the rise of other data-intensive and AI-related 
technologies such as the Internet of Things (IoT) and 
speech recognition. 

3.1. BALANCING AI’S ENERGY CONSUMP-
TION WITH EFFICIENCY GAINS

Although AI remains reliant on heavy energy consump-
tion, several innovations are enabling smaller AI mod-
els to perform at levels comparable to larger models, 
reducing the need for excessive energy consumption. 

Some techniques contributing to this shift are model 
pruning, quantization, and knowledge distillation (EPRI 
2024). Model pruning is a technique that reduces the 
number of unnecessary elements in neural networks, 
leading to robust performance while reducing com-
putational requirements. Quantization is the practice 
of reducing the numerical accuracy of computations, 
resulting in lower computational costs without signifi-
cant precision loss. Lastly, knowledge distillation is the 
process of creating smaller models with similar func-
tionalities to larger models. These techniques all make 
AI systems more energy-efficient without sacrificing 
performance. 

Other innovations in energy efficiency are also tak-
ing place in hardware. Specialized AI chips, such as 
tensor processing units (TPUs),2 offer significant 
performance and energy efficiency improvements 
over other processing units (Khan 2020). In 2017, 

Google’s first TPU provided 15x to 30x higher perfor-
mance than GPUs and CPUs (Sato and Young 2017). 
Field-programmable gate arrays (FPGAs) and applica-
tion-specific integrated circuits (ASICs) are two other 
specialized chips that are primarily used for inference, 
as they are more energy efficient than GPUs (Khan 
2020). These energy-efficient hardware innovations 
are helping to mitigate the energy burden associated 
with AI training and inference. 

3.2. CHALLENGES: JEVONS’ PARADOX 
AND AI’S ENERGY FUTURE

However, while these advancements offer hope, there 
is a risk that energy efficiency gains may not necessar-
ily lead to a decrease in overall energy consumption. 
This potential dilemma is reflected in Jevons’ Paradox, 
which suggests that increases in efficiency can some-
times result in higher overall consumption, as lower 
costs encourage more widespread use (Alcott 2005). 
In the context of AI, as models become more efficient 
and accessible, demand for AI applications may surge, 
offsetting any energy savings. 

For example, the increased deployment of AI across 
industries may drive up the number of AI models being 
trained and deployed globally. The growing use of 
generative AI applications and the widespread demand 
for real-time AI services will also likely increase the 
sector’s energy footprint, even with improvements in 
model efficiency. 
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4. Conclusion
The complexity of the electricity sector in the U.S. lends itself well to the integration of gener-
ative AI. AI can augment humans in operating the electricity sector and the grid as the sector 
becomes increasingly complex with the introduction of new technologies. 

As outlined in this report, there are many applications of generative AI in the electricity sec-
tor. From predictive maintenance to energy demand forecasting, the applications of AI in the 
electricity sector are broad and only going to continue to expand. As AI models improve, so 
will the applications of AI in the electricity sector, which could lend itself to improvements in 
productivity. 

AI has the potential to enhance efficiency in the electricity sector, yet it also comes with a sig-
nificant increase in energy consumption. While it remains unclear whether AI’s efficiency gains 
will offset its increased energy consumption, it is evident that AI and the electricity sector are 
deeply interconnected. Historically, technological advancements and efficiency improvements 
have led to higher energy consumption, making it difficult to predict the net impact of AI on 
the sector.

Despite these uncertainties, AI is demonstrating productivity improvements in the electricity 
sector. By augmenting human labor, AI can help reduce errors, enhance efficiency, and lower 
operational costs. While this case study highlights current AI applications, continued ad-
vancements are likely to unlock even more innovation, shaping the future of productivity in the 
electricity sector. 
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Endnotes
1 Generative adversarial networks are a type of generative AI model that are split into two parts: a generative 

model that generates data and a discriminative model that distinguishes between the real and synthetic data 
(Goodfellow et al. 2014). As the model is trained, the synthetic data created becomes so similar to the real 
data that, if training is done well, the discriminative model will be unable to distinguish between the real and 
fake data. 

2 Tensor processing units are a type of ASIC that is specifically designed for matrix operations, the key computa-
tion used in training deep neural network AI models (Sato and Young 2017). 


